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Electronic Devices for Diagnosis and
Prognosis

» [radifional medical electronics
» Signal processes: ECG, EMG, and EEG

®» |maging systems: Ultrasonics, Magnetic Resonance
Image (MRI), and Computerized Tomography (CT)

» Healthcare paradigm shift: personalized
healthcare

®» Fmerging biotechnologies with nano/micro
technologies

» Biochip fechnologies
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Bio-Chip

» Miniaturized bio-diagnosis devices or systems
®» Promoted by modern nano/micro technology
» Jsed to detect or analyze the biomolecular composition

» Utilizing different transduction methods to enhanced the
sensitivity and reduce the cost

® [t has become an emerging research field
®» To understand the life science
» To identify diseases, drugs, and therapies



Necessity of Biochip

» Biomolecular sensing and diagnosis is the fundamental
technique

= Virus detection, protein analysis, cell reaction, and
environmental monitoring

®» | fe science and health care
» The method must be simple, selective, and highly sensitive
» Traditional protein bio-diagnostics

» Centrifugation, electrophoresis, chromatography,
Immunosorbent assay, and mass spectrometry

®» Time consuming, large amount of samples, High cost
» Miniaturized analysis systems

» Bio-chip or Lab-on-a-chip

» ootential to reduce cost and waste of bio-diagnostics

» Personalized health-care



Lab-on-A-Chip |

» [t can achieve
miniaturization,
automation, and full-
infegration

» Parallel process
®» Save the reagent
» High reproducibility

» Anti false positive
detection




Lab-on-A-Chip |

® |t infegrates
» Sample loading
®» [uidic tfransport

®» Sample preparation:
concentration,
separation, and
reaction

» Defection
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Lab-on-A-Chip |l

» Advantages
®» | ow sample volume consumption
» Higher analysis throughput and better efficiency
®» Better bio-process control because of faster response
®» Compact system
» | ower device costs

» Disadvantages

» Device/system performance highly depends on microfluidic
condition

» Relative low signal to noise ratio because of small sample volume
= Not fully developed
®» |Implemented systems
» PCR chip
» Flecfrophoresis chip
» Single-cell analysis chip




Bio-Sensor Characteristics |

» Sensitivity

» The ability to describe the targeted A
biomolecular concentration

®» |t s fypically defined as the ratio of
the signal response and the
targeted biomolecular
concentration

»Dynamic Range o |__ /o

» The effective detection range of Concentration
the device

» Typically, it means the linear range

Sensitivity

Dynamic
Range

Sensor Output




Bio-Sensor Characteristics

» Selectivity

»The ability to detect the targeted molecules among different
kinds of molecules

® |t s defined as the sensitivity of targeted molecules divided by
the sensifivity of non-targeted molecules

» Typically it is based on the biomolecular binding affinity

» However, it will be affected by the design of different sensing
tranconduction methods

» | it of Detection

» The [owest molecular concentration can be identified by the
sensor

» Typical range is around nano-molar(10” M), some specific
method can achieve atto-molar (1017 M)




Bio-Sensor Characteristics i

®» Response fime

®» |t indicates how fast the sensor can response to the targeted
molecular attachments

®» |t is fypically defined as the time required to obtain 95% signal
stfrength

®» Recovery time

» |t indicates how fast the sensor can be back to normal status
after the targeted molecule removed

» Signal-to-noise ratio
» This represents how clearly sensor signal can be obtained
» |n general, the noise source come optically or electronically
®» |t is defined as the ratio of signal level divided by noise level



Biomolecular Detection Technologies

» Standard Diagnosis Technologies

®» Fluorescence detection

» Amperometric detection

» Diagnosis Technology on
Microchip

» Surface plasma resonance

» Microcantilever
®» [on-sensitive field effect fransistor

» Nanowire




Fluorescence Technigues

®» [0 see s fo believe...

® [Fuorescence technigues have been widely used
IN Most of biological diagnosis

®» EFnzyme-linked immunosorbent assay (ELISA)
» Polymerase chain reaction (PCR)

® [Fuorescent microscopy
» DNA sequencing

» Gel electrophoresis
»ciC...




Basics of Fluorescence Techniques

® Fluorescence combined with image
systems is a sensitive and quantitative
method for biological applications

» Advantages

» Good sensitivity: with a good image
system, single molecule image can be
achieved

= Multicolor detection: multiple targets
using different fluorescent labels can be
spectrally resolved

®» Good stability: compared with radio-
labelled molecules, it has longer sheli-life

» | ow hazard and low cost




Fluorescence Imaging Systems

»Key elements
®» Excitfation source
®» | ight delivery optics
®» | (ght collection opfics

» Flirafion of the emitted
light

» Detection, amplification
and digitization
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Detection

® For detection and quantitation of
emitted light
» Photomultiplier tube (PMT)
» Charge-coupled device (CCD)

MT

» An extremely sensitive detectors of light Incoming Photomultiplier Tube

Photon\ Window

» |ncident photons strike the photocathode c';?rhﬁ / A
material with electrons being produced as a -i‘
consequence of the photoelectric effect "

Dynodes ” d Anode ﬁ

» [hese electrons are directed by the focusing ...
electrode toward the electron multiplier, Flesnge
where electrons are multiplied by the process
of secondary emission
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Microscopy (TIRFM)

®» The sensifivity of fluorescence can be
enhanced by eliminating background
fluorescence

» |mprove the signal-to-noise ratio and the spatial
resolution of the features or events of interest

» Refraction (or bending) of light as it encounters
the interface between two media having
different refractive indices (n) results in
confinement of a portion or all of the light to the
higher-index medium

» Although light no longer passes intfo the second
medium, the reflected light generates a highly
restricted electromagnetic field adjacent to the
interface
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Total Internal Reflection Fluorescence
Microscopy (TIRFM)

®» An evanescent field is generated in the specimen
medium immediately adjacent to the interface

» The fluorophores nearest the glass surface are selectively
excited

®» Two basic approaches
= Prism method
» Objective lens method

Inverted Microscope TIRFM Configurations

) Focus (o T
(a Prism ocusing o g
NA < 1.38
Glass Cube | Lens\ Specimen ( )
(Fixed) —— \
Laser Beam
\ Glycerol |

Objective -

Stage

. Objective ' i
Figure 7 Laser Light (NA >1.38)




Surface Plasma Resonance Biosensor

Sensor chip
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Surface Plasma Resonance Biosensor

» [he four basic elements for SPR

®» | ght source: polarization,
wavelength, angle, intensity, and

phas modulation J

®» Prism: couple photons to
plasmons

» Metal thin film: Au, Ag, Cu
® | ight dector
®» Measurement methods

» Angle modulation, wavelength
modulation, intensity modulation,

and phase modulation
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Optical Wave Guide

®» The micro cavity structure used for optical
filtering/coupling has been developed for years

® |t can be fabricated by micro-fabrication

®» The optical coupling effect is highly depended on the gap
between the micro ring and wave guide

®» The optical coupling is also affected by the surface
effective reflection index

»The biomolecules binding will affect the surface effective
reflection index

®» The optical spectrum shifting will be proporfional to the
biomolecular concentration and species




Light source

Fiber Biosensors

Syringe pump

Waste
Flow cell

Side polished SPR sensor
(b)

Input
fibre

Surface modified
gold filrm

Wind o in
Isolating layer

Transparent PTFE
AF isolation layer

Reference out  signal out



Amperometric detection

®» Defection of ions in a solution based on electric
current or changes in electric current
» A potential is applied to a working electrode. Electro-

active compounds are either oxidized or reduced at the
working electrode, and the resulting current is monitored

)




Amperometric detection

» Based on simple redox chemistry involving the fransfer of
electrons from target analyte to the working electrode

» When electroactive compound pass by, working
electrode either receives or supplies an electron and the
current be measured

» Reference electrode acts as a zeroing point

®» |f oxidization is occurring at the working electrode,
reduction occurs at auxiliary electrode

» Sensifivity can be tuned by adjusting potential across
working electrode and reference electrode



Amperometric detection
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Faraday and Non-Faraday Current

®» Faraday current

® Flecfrons across the interface
(electrolytes/electrodes) by reduction-oxidation
processes

» Non-faraday current

»[he change of electrode potentials induces ions
redistribution on the top of electrodes

®» For amperometry, the major current is
faraday current



Processes of Electrochemical Reactions

» The electrochemical reactions can be

characterized by

» Flectron fransfer on the intferface of electrodes

®» Reactants mass transportation

» Surface adsorption and desorption

®» MQass transportations
= Migration
» Diffusion

» Convection
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System of Amperometry

» Two-electrode system and Three-electrode system
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Equivalent Model of Interfaces
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Mechanical Resonance

» Utllizing the fundamental mechanics

®» Resonance frequency is highly depending on the
mass and boundary condition of the structure

®» As the biomolecular binding to the surface, it
locally changes the condifion of the mechanical
prosperities

» Utilizing the frequency analysis, the targeted
biomolecular concentration is proportional to the
frequency shiffing




Mechanical Resonance

» Quartz crystal microbalance
(QCM)

» Based on the quartz resonator, the
resonance frequency is very
sensitive to the mass of the quartz
thin film

®»[here are two electrodes on each
side of the quartz thin film

» The bio-recognition molecules can
be bounded on to the surface

®» The resonant frequency change is
inearly related to the changes of
mass from biomolecules

http://pubs.acs.org




Quartz Crystal Microbalance Biosensors
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Surface-Acoustic-Wave Biosensor
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Mlcromechamcal Bilosensors
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Micromechanical Biosensors
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Field-Effect Transistor
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lon-Sensitive Field-Effect Transistor (ISFET)

The ISFET is in fact nothing else than a MOSFET with the gate
connection separated from the chip in the form of a reference
electrode inserted in an agueous solution which is in contact with
the gate oxide.
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Fig. 3. Schematic representation of MOSFET (a), ISFET (b), and electronic diagram (c).

P. Bergveld, “Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B, 88 (2003) 1-20




ISFET
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lon-Sensitive Fleld-Effect Transistor
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Poly-SI Nanowire Biosensor
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Poly-SI Nanowire Biosensor
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Conclusion

» Biomoelcular diagnosis technologies have become
an emerging biomedical engineering applications

» Microfluidics and microsensors are infegrated to
perform wearable healthcare devices

®» |[nfegrated with diagnosis tools and data analysis to
realize personalized healthcare system




